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Abstract

The resistive wall impedance is usually calculated as-
suming the skin depth being much smaller than the cham-
ber thickness. This approximation is not always correct. In
particular, it is not valid when the revolution frequency is
very low (as in VLHC [1]), or the surface is coated by a thin
conductive layer (as for extraction kickers [2]), or for the
coherent effects in the closed orbit motion [3]. A method
of analytical calculation of the transverse impedance is de-
veloped here for multi-layer vacuum chambers and applied
to an arbitrary two-layer structure.

1 METHOD OF CALCULATIONS

Calculations of the electromagnetic fields excited by the
beam dipole motion are simplified when the wave length
of the beam transverse oscillations is much longer than the
aperture, c/ω � a. This condition is always satisfied, if the
finite skin depth plays a role. Charges and currents excited
on the chamber surface feel only local beam offset; thus,
they feel the beam as moving in parallel to the chamber
axis with small transverse oscillations at a given frequency
ω.

This dipole motion of the beam can be presented as a
superposition of oscillating electric and magnetic dipoles:
one is due to the beam charge and another due to its cur-
rent [1]. The chamber response on the electric dipole is
just the electrostatic screening. For this response, the trans-
verse electric field ~E = −∇Φ can be found from the scalar
potential Φ excited by the beam offset x0 exp(−iωt) in a
round vacuum chamber:
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where I is the beam current, r, θ are the polar coordinates,
and a is the chamber radius.

The oscillating magnetic dipole gives rise to the trans-
verse magnetic field. Due to a fact that the longitudinal
wave length is much larger than the aperture, all the fields
can be expressed through the longitudinal vector potential
Az .

Because of the chamber axial symmetry, the vector po-
tential can be written as Az = A(r) cos θ e−iωt; thus, only
its radial factor A(r) has to be found. For round chambers,
this radial factor satisfies Bessel equation:
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with µ, ε as the magnetic and dielectric constants of the
medium, and σ as its conductivity.

For a multi-layer problem, Eq. 2 has to be solved with
the following boundary conditions:

• The vector potential has a singularity at r = 0 due to
the beam magnetic dipole: lim

r→0
Ar = 2Ix0/c.

• At any boundary, A and µ−1dA/dr are continuous.

• The vector potential vanishes at infinity.

Inside the vacuum chamber ε = µ = 1, and the vector
potential writes as

A(r) = A0(a/r − Gr/a) , (4)

where the constant G has to be found from the boundary
conditions.

Inside the metal 4πσ � ω, and the vector potential sat-
isfies the Bessel equation (2) with the wave vector

κ2 = −4πiσµω/c2 ≡ −2i/δ2 , (5)

where δ2 = c2/(2πσµω) is the skin-depth.
A solution of the Bessel equation can be presented as a

superposition of its two basis functions, which can be taken
as arbitrary combinations of the modified Bessel functions.
It is convenient to take this basis as a generalization of
sinh(κ(r−a)) and cosh(κ(r−a)), which compose a funda-
mental pair in case κa � 1. In other words, it is convenient
to choose such basis solutions shb(κr) and chb(κr) (”sine
hyperbolic Bessel” and ”cosine hyperbolic Bessel”) that

chb(κr) = 1 chb′(κr) = 0
shb(κr) = 0 shb′(κr) = 1
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with a symbol ′ staying for a derivative over the argument
κr.

In terms of the modified Bessel functions
I1(κr), K1(κr), the required combinations write:

shb(κr) ≡ κa[I1(κr)K1(κa) − I1(κa)K1(κr)] ;

chb(κr) ≡ κa[I′1(κa)K1(κr) − I1(κr)K′
1(κa)] .

(7)

Here we used a property of the Bessel’s Wronskian:
I′1(κa)K1(κa) − I1(κa)K′

1(κa) = 1/(κa). By defini-
tion, these hyperbolic Bessel functions depend on two ar-
guments, κa and κr. However, the first argument is al-
ways taken at the inner radius of the considered layer, so
it may be safely omitted. For high value of the arguments,
κa � 1, (skin depth � radii) the introduced hyperbolic



Bessel functions are reduced to the conventional hyperbolic
functions:

shb(κr) → sinh(κ(r − a)) ;
chb(κr) → cosh(κ(r − a)) .

(8)

Note that inside metal κ ∝ 1 ± i; thus, the used Bessel
functions of complex arguments can be expressed in terms
of Kelvin functions ber, bei, ker, kei of real arguments.
For a non-conductor, the basis functions reduce to
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κr
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− κa2

2r
, chb(κr) =
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2a
+

a

2r
. (9)

The solution of the Bessel equation can be presented as

A/A0 = C chb(κr) + S shb(κr) . (10)

For the outermost space, the solution depends on whether
it is filled by a metal (with κ = κo, the subscript o stays for
’outermost’) or non-conductor:
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K1(κor) , conductor

. (11)

As a result of the consequent solution of the boundary
equations, the inner constant G in Eq. (4) can be found.
After that, the transverse impedance per unit length is ex-
pressed as

Z⊥ = −i
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)

, (12)

where β = v/c and the term ∝ 1/β2 comes from a con-
tribution of the electric dipole. Note that the transverse
impedance is defined here in A. Chao’s convention [5].
This can also be presented as

Z⊥ = −i
Z0β(1 − G)

2πa2
− i
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2πa2βγ2
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⊥
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⊥
. (13)

For infinite conductivity G = 1, so the first term Zσ
⊥

∝
1 − G is a resistive wall impedance. The second term
Z∞

⊥
∝ β−1γ−2 describes image charges of the perfectly

conducting wall; it vanishes in the relativistic limit.

2 TWO-LAYER CHAMBER

In this section, the impedance is found for an arbitrary
two-layer chamber. It is convenient to use subscripts 1, 2
for values related to the first or second layer. The inner
layer with the thickness d = a2 − a1 is a metal with the
wave vector κ1 =

√

−4πiσ1µ1ω/c2 and the medium pa-
rameter κ̃1 = κ1/µ1. The second layer is not bounded
from the outside and characterized by the medium param-
eter κ̃2 = κ2/µ2 if it is conductive, otherwise κ̃2 =
1/(a2µ2).

The continuity conditions for A and µ−1dA/dr follow:

1 − G = C
−1− G = Sκ̃10

Cc1 + Ss1 = Go

Cc′1 + Ss′1 = −Goκ̃21

. (14)

Here c1 = chb(κ1a2) , s1 = shb(κ1a2) , c′1 =
chb′(κ1a2) , s′1 = shb(κ1a2); the parameters κ̃10 = κ̃1a1

and κ̃21 = κ̃2/κ̃1 reflect relative properties of adjacent me-
dia, and the constant Go describes vector potential in the
outer layer.

Making a ratio from the first pair of the boundary equa-
tions leads to an expression of the impedance factor 1 − G
in terms of the amplitude ratio T = S/C:

1 − G = 2/(1 − κ̃10T ) . (15)

Similarly, a pair of equations at the outer boundary leads to

T = −(κ̃21c1 + c′1)/(s′1 + κ̃21s1) . (16)

Moving back from Eq. (16) to Eq. (15) and then to Eq.
(12), the impedance is found:

Zσ
⊥ = −i

Z0β

πa2

s′1 + κ̃21s1

s′
1
+ κ̃21κ̃10c1 + κ̃21s1 + κ̃10c′1

(17)

for an arbitrary two-layer chamber, with the only assump-
tion that the longitudinal wave length is long: v/ω �
a1, a2. The inner layer is a metal with an arbitrary skin
depth, the outer medium is not bounded outside, and it can
be either conductive or not.

An example of the impedance behavior as a function of
ad/δ2 ∝ ω is shown in Fig 1. The inner metal layer is taken
with the thickness-to-radius ratio d/a = 0.05. The outer
medium is either vacuum or a non-conductive magnetic.
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Figure 1: Resistive impedance in units of Z0/(2πa2) as
a function of ad/δ2 ∝ ω. Solid red and dashed green
lines give its real and negated imaginary parts for d/a =
0.05 , µ1 = 1 and vacuum outside. The dot-dashed blue
and dotted magenta lines are same functions when the out-
side medium is a non-conductive magnetic with µ2 = 500.
Calculations are performed with Mathematica [6].

Three different regions can be distinguished here:

• High frequencies, δ < d: the conventional result
Zσ
⊥
∝ 1/

√
ω , ReZσ

⊥
= −ImZσ

⊥
is valid.

• Moderate frequencies, d < δ <
√

ad: the impedance
goes as Zσ

⊥
∝ 1/ω , ReZσ

⊥
� |ImZσ

⊥
|.



• Low frequencies, δ >
√

ad: the real part of
impedance linearly goes to 0, while the imaginary part
to a non-zero constant. A non-zero value of the imag-
inary part at ω = 0 corresponds to dipole fields of
image charges (and currents, with magnetic outside)
driven by the beam offset.

The real part of impedance reaches maximum in the bound-
ary of low and intermediate frequencies, δ '

√
ad. Apart

from the low-frequency region, the magnetic permeability
of the outside medium µ does no influence the impedance.
At low frequencies, the magnetic doubles the imaginary
part of impedance and gives a factor of 4 to its small real
part.

Except the extremely low frequencies, with δ ≥ a,
where the impedance is almost pure imaginary, the Bessel
functions can be substituted by their asymptotics, the hy-
perbolic functions. This allows to simplify the result (17)
as

Zσ
⊥ = −i

Z0β

πa2

1 + κ̃21t1
1 + κ̃21κ̃10 + (κ̃21 + κ̃10)t1

, (18)

with t1 = tanh(κ1d). It can be deduced from here
that the impedance is independent of the outer layer when
√

σ2/µ2 �
√

σ1/µ1 tanh(κ1d).
The impedance may be specified for many particular

cases. For example, when the outer medium is vacuum, and
both the skin depth and the chamber thickness are small in
comparison with the radius, the impedance (18) writes as
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⊥
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πa2
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If the outer layer is a non-conductive magnetic with µ2 �
1, and the inner layer is a non-magnetic metal, then

Zσ
⊥

= −i
Z0β

πa2

1

1 + κa tanh(κd)
. (20)

This result shows the impedance saturation with the outside
permeability.

The transverse impedance for a thin chamber with vac-
uum outside is presented (without a derivation) in Ref. [4]
(see Eq. (6.122) at p. 170). That result is identical to our
Eq. (19) at κd � 1 and µ = 1. However, when µ 6= 1, the
results are significantly different; we leave it for the readers
to decide what is correct.

3 THREE AND MORE LAYERS

The described method can be directly applied for an ar-
bitrary number of layers n. To find the impedance (12),
one has to solve a consequence of n simple recursive linear
equations, expressing one unknown value - the amplitude
ratio for an inner layer - through this value for an adjacent
outer layer, which comes at the previous step. Note that the
amplitude ratio in the layer n − 1 is known - it is given by

Eq. (16):

Tn−1 = − c′n−1 + κ̃n,n−1cn−1

s′n−1 + κ̃n,n−1sn−1

. (21)

A transfer from a layer m to a layer m − 1, with 2 ≤ m ≤
n − 1, is found as

Tm−1 = − c′m−1 − Tmκ̃m,m−1cm−1

s′m−1 − Tmκ̃m,m−1sm−1

. (22)

Finally, a transfer from the layer 1 to the ’layer 0’, or inner
part of the vacuum chamber, is given by Eq. (15), assum-
ing T = T1 there. In this section, all the notations are
just slightly generalized from ones of the previous section:
cm−1 = chb(κam) , κ̃m,m−1 = κ̃m/κ̃m−1, etc. Remem-
ber that the used basis Bessel solutions chb(κr), shb(κr)
depend also on the inner radius of the corresponding layer,
according to Eqs. (6, 7) with a as this radius. In other
words,

cm−1 = q+(I′1(q+)K1(q−) − I1(q−)K′

1(q+)) , (23)

with q+ = κm−1am , q− = κm−1am−1 and similar for
sm−1. Substituting the presented formulae one into an-
other, the impedance is calculated analytically for any num-
ber of layers.

4 CONCLUSIONS

An effective method is found for analytical calculation
of the transverse resistive wall impedance for multi-layer
round vacuum chambers. A compact formula is derived for
an arbitrary two-layer radial structure.

An opposite limit to the round shape of the vacuum
chamber is flat one, when it can be approximated by a pair
of parallel multi-layer plates. This problem is solved in our
next paper [7].
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